

INCREASED THERAPEUTIC EFFECTIVENESS OF PE-BASED IMMUNOTOXINS

SUMMARY

To improve the therapeutic effectiveness of PE-based immunotoxins through multiple rounds of drug administration, NIH inventors have sought to identify and remove the human B cell epitopes within PE. Previous work demonstrated that the removal of the murine B cell and T cell epitopes from PE reduced the immunogenicity of PE and resulted in immunotoxins with improved therapeutic activity. The National Cancer Institute's Laboratory of Molecular Biology seeks interested parties to co-develop and commercialize immunotoxins using toxin domains lacking human B cell epitopes.

REFERENCE NUMBER

E-263-2011

PRODUCT TYPE

• Therapeutics

KEYWORDS

- Chemotherapy
- Immunotoxin
- Immunogenic epitopes
- Human B cell epitopes
- Pseudomonas Exotoxin A
- B-Cell, T-cell

COLLABORATION OPPORTUNITY

This invention is available for licensing and co-development.

CONTACT

John D. Hewes NCI - National Cancer Institute 240-276-5515

John.Hewes@nih.gov

DESCRIPTION OF TECHNOLOGY

Patients receiving immunotoxin cancer therapy are less likely to experience the deleterious side-effects associated with non-discriminate therapies such as chemotherapy or radiation therapy. Unfortunately, the continued administration of immunotoxins often leads to a reduced patient response due to the formation of neutralizing antibodies against immunogenic epitopes contained within Pseudomonas exotoxin A (PE).

To improve the therapeutic effectiveness of PE-based immunotoxins through multiple rounds of drug administration, NIH inventors have sought to identify and remove the human B cell epitopes within PE. Previous work demonstrated that the removal of the murine B cell and T cell epitopes from PE reduced the immunogenicity of PE and resulted in immunotoxins with improved therapeutic activity.

This technology involves the identification and removal of major human B cell epitopes on PE by mutation or deletion. Considering these immunotoxins will be administered to humans, the removal of human immunogenic epitopes is important. The resulting PE-based immunotoxins have increased resistance to the formation of neutralizing antibodies, and are expected to have improved therapeutic efficacy.

POTENTIAL COMMERCIAL APPLICATIONS

 Treatment of diseases associated with increased or preferential expression of a specific cell surface receptor such as hematological cancers, lung cancer, ovarian cancer, breast cancer, and head and neck cancers

COMPETITIVE ADVANTAGES

- PE variants now include the removal of human B-cell epitopes, further reducing the formation of neutralizing antibodies against immunotoxins which contain the PE variants
- Less immunogenic immunotoxins result in improved therapeutic efficacy by permitting multiple rounds of administration in humans
- Targeted therapy decreases non-specific killing of healthy, essential cells, resulting in fewer non-specific side-effects and healthier patients

INVENTOR(S)

• Ira Pastan, MD (NCI)

DEVELOPMENT STAGE

Discovery (Lead Identification)

PATENT STATUS

- U.S. Filed: U.S. Patent Application No. 14/927,645 filed October 30, 2015
- Foreign Filed: European Patent Application No. 12766780.6 filed February 28, 2014

RELATED TECHNOLOGIES

- E-269-2009 Improved PE-based Targeted Toxins: A Therapeutic with Increased Effectiveness
- E-292-2007
- E-262-2005

THERAPEUTIC AREA

• Cancer/Neoplasm